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Abstract

Out-of-plane (flexural) vibration is a major source of sound radiation from many mechanical or
structural components having annular or circular disk shape. The typical thickness of practical components
is often beyond the thin plate theory limit and it may have considerable effect on sound radiation. But,
traditionally, thin annular disk models have been employed for such structures neglecting the thickness
effect. In this article, structural eigensolutions for the out-of-plane modes and sound radiation from the
modal vibration of a thick annular disk with free–free boundaries have been calculated using both thick and
thin plate theories. A new analytical formulation is proposed for the sound radiation problem. In addition,
the same problem has been solved by a semi-analytical procedure in which the disk surface velocity is
numerically defined by a finite-element model and sound radiation is then analytically obtained using a
modified circular radiator model. Also, the effects of radii and thickness ratios on the structural and
acoustic radiation characteristics are investigated using the analytical procedure. Finally, the effect of
boundary conditions is briefly examined.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic radiation from thick plates or disks has not been adequately examined though there is
a substantial body of literature on the structural dynamics of thin and thick plates [1–9]. Limited
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

a outer radius of annular disk (mm)
b inner radius of annular disk (mm)
B Hankel transform
c0 speed of sound in the acoustic

medium (m/s)
Db flexural rigidity of disk (Nm)
E Young’s modulus of disk (N/m2)
f(t) dynamic force on disk (N)
F amplitude of applied force (N)
g free-field Green function
i

ffiffiffiffiffiffiffi
�1

p

k acoustic wave number (rad/m)
h disk thickness (mm)
h̄ disk thickness ratio (h/a)
m number of nodal circles in the disk
Mr, Mj, Mrj bending moment in the disk

(Nm)
n number of nodal diameters in the

disk
n̄ surface normal vector at the given

source position
p far-field sound pressure (Pa)
P spatially-dependent far-field sound

pressure amplitude (Pa)
Pmn far-field sound pressure amplitude

due to the (m, n)th out-of-plane
mode (Pa)

R radius of sphere at the far-field
location (m)

Qr, Qj shear forces in the disk (N)
r, f, z cylindrical coordinates
R, y, f spherical coordinates
rf position vector of the excitation

force f(t) on the disk
rp position vector of a receiver position

sound pressure
rs position vector of a sound source

position
So surface of the sound source
Sv boundary surface of the acoustic

control volume
[TTHICK] characteristic matrix for the thick

plate theory

[TTHIN] characteristic matrix for the thin
plate theory

V acoustic control volume
w transverse displacement in the disk

(m)
W spatial dependent transverse displa-

cement in the disk (m)
b radii ratio of the annular disk
Z angle between the surface

normal vector and the vector from
source position to receiver position
(rad)

Dy increment in the cone angle y
(rad)

lmn dimensionless structural eigenvalue
for the (m,n)th flexural mode

n Poisson’s ratio of disk
P acoustic power from the disk vibra-

tion (W)
Pmn acoustic power from the modal

vibrations of the disk (W)
r0 mass density of the acoustic medium

(kg/m3)
rd mass density of the disk (kg/m3)
smn sound radiation efficiency of normal

modes of the disk
j azimuthal angle of the disk (rad)
Df increment in azimuthal angle f

(rad)
< radiation resistance of disk
Fmn flexural mode shape of the disk
Cr, Cj bending rotations of the disk (rad)
cr, cj spatially dependent bending rota-

tions of the disk (rad)
o angular frequency (rad/s)
omn natural frequency of the (m, n)th

out-of-plane mode (kHz)
zmn modal damping ratio of the (m, n)th

out-of-plane mode (%)

Subscripts

d disk
m, n out-of-plane mode indices
0 acoustic medium
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p observation point in a far-field loca-
tion

r radial direction of the disk
s source (radiator)
j circumferential direction of the disk

Abbreviations

BEM boundary element method
FEM finite element method
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acoustic studies have considered either flexural vibration modes or rigid body piston motions of
thin disks [11–15]. In this article, new analytical and semi-analytical methods for sound radiation
from a thick annular disk will be proposed. In particular, we comparatively evaluate the merits of
thin vs. thick plate theories on the calculation of radiation from out-of-plane flexural modes.
Vibro-acoustic experiments and large-scale finite and boundary elements codes are used to
validate the analytical formulations.
Annular disk idealization can be used to analyze many real-life mechanical components such as

gears, brake rotors, clutches, flywheels, railway wheels, circular saws, and electric motor. In many
cases, thickness (h) is not negligible relative to other dimensions of the component, and thus one
must consider the thickness effects in structural dynamic and acoustic radiation characteristics.
Fig. 1 illustrates the example case that is assumed to be non-rotating and without the complicating
effects of an inner hub. The disk is assumed to be of uniform h and made of an undamped,
isotropic material. First, free–free boundaries at the inner and outer edges are assumed.
Then, the inner edge is assumed to be ideally fixed but the outer edge is still free. Table 1 provides
typical values of 3 disks. Disk I is used for all analytical, numerical, and experimental
studies. Additionally, Disks II and III are used for structural modal analysis to examine plate
theories.
For a complete investigation of the vibro-acoustic characteristics of a thick annular disk, it is

necessary to simultaneously consider both in-plane and out-of-plane vibrations. But, the current
analysis focuses only on the out-of-plane modal vibration and the resulting sound. Primary
assumptions are as follows: (1) Structural and acoustic systems are linear time-invariant systems
and complicating effects such as fluid loading and acoustic scattering from the disk edges are
negligible. (2) Structural velocities in the normal direction (z) vary sinusoidally in the j direction.
(3) Free and far-field sound pressure at the observation point (rp) is generated only by the
structural motions of two normal surfaces and the inner or outer radial surfaces at edges does not
contribute to the far-field sound. (4) Coupling between in-plane and out-of-plane modes is
negligible.
Chief objectives of this article are as follows. (1) Critically examine thick and thin plate theories

and investigate the effect of rotary inertia and shear deformations on the structural eigensolutions
and acoustic sound radiation. (2) Develop analytical and semi-analytical solutions for sound
radiation from modal vibrations. (3) Validate analytical solutions using computational and/or
experimental vibro-acoustic methods. (4) Study the effects of the disk geometry and boundary
conditions on sound radiation using the proposed analytical solutions. Only single-mode
excitations are considered here as the multi-modal excitations and coupling issues will be
considered in a future article. Table 2 summarizes various models or methods that will
be employed in this study. For the analytical method, the procedure includes the analytical
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Fig. 1. A thick annular disk with free–free or fixed at (r=b) - free boundaries.

Table 1

Disk examples with free-free or fixed (r=b)-free boundaries

Disk I Disk II Disk III

Outer radius a (mm) 151.5 139.0 151.5

Inner radius b (mm) 82.5 82.5 82.5

Radii ratio b (=b/a) 0.54 0.59 0.54

Thickness h (mm) 31.5 31.5 16.3

Thickness ratio h̄ ð¼ h=aÞ 0.21 0.23 0.11

Density rd (kg/m
3) 7905.9 7905.9 7905.9

Young’s modulus E (GPa) 218 218 218

Poisson’s ratio n 0.305 0.305 0.305
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determination of structural eigensolutions and the resulting sound field. Conversely, the
finite-element method (FEM) is used for structural analysis for the semi-analytical formulation
though the sound field is still computed using a modified circular disk radiator model.
2. Structural analysis based on thick and thin plate theories

2.1. Thick plate theory

According to the procedure proposed by Mindlin and Deresiewicz [7] or Mcgee et al. [8], the
vibratory displacements of a thick annular disk are assumed as follows, while recognizing the
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Table 2

List of models developed and methods employed for Disk I

Medium Model or method

designation

Structural

dynamics

formulation

Acoustic

radiation

formulation

Disk boundaries Method type

Structural

dynamics

A Thick plate — Free–free Analytical

B Thick plate -

without rotary

inertia effect

— Free–free Analytical

C Thin plate — Free–free Analytical

D Finite elements — Free–free Computational

E Experiment — Free–free Experimental

F Thick plate — Fixed–free Analytical

G Thick plate

without rotary

inertia effect

— Fixed–free Analytical

H Thin plate — Fixed–free Analytical

I Finite elements — Fixed–free Computational

Structural

dynamics +

acoustic radiation

J Thick plate Thick plate Free–free Analytical

K Thin plate Thin plate Free–free Analytical

L Finite elements Thick plate Free–free Semi-analytical

M Finite elements Boundary

elements

Free–free Computational

N Experiment Experiment Free–free Experimental

O Finite elements Boundary

elements

Fixed–free Computational
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effects of shear and rotating inertia.

ur ¼ zCrðr;j; tÞ; uj ¼ zCjðr;j; tÞ;w ¼ wðr;j; tÞ: (1)

Here, ur, uj, and w are components in the radial (r), circumferential (j), and transverse directions
(z), Cr and Cj are the bending rotations of normal to the mid-plane in radial and circumferential
directions, respectively. Refer to nomenclature for a complete list of symbols. The equations of
motion in terms of the stress resultants in polar coordinates (r, j) are

qMr

qr
þ
1

r

qMj

qj
þ
1

r
Mr � Mj
� �

� Qr ¼
rdh3

12

q2Cr

qt2
: (2)

qMrj

qr
þ
1

r

qMj

qj
þ
2

r
Mrj � Qj ¼

rdh3

12

q2Cj

qt2
: (3)

qQr

qr
þ
1

r

qQj

qj
þ
1

r
Qr � Qj ¼ rdh

q2w
qt2

; (4)

where rd is the mass density of the annular disk. The stress resultants in terms of moments Mr,
Mj, and Mrj, along with shear forces Qr and Qj can be related to the transverse displacements
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and bending rotations as

Mr ¼ Db
qCr

qr
þ

n
r

Cr þ @
qCj

qj

� �� �
; Mj ¼ Db

1

r
Cr þ

qCj

qj

� �
þ n

qCr

qr

� �
; (5,6)

Mrj ¼ Mjr ¼
ð1� nÞDb

2

qCj

qr
þ
1

r

qCr

qj
�Cj

� �� �
; (7)

Qr ¼ k2Gh Cr þ
qw

qr

� �
; Qj ¼ k2Gh Cj þ

1

r

qw

qj

� �
; (8,9)

where Db ¼ Eh3=12ð1� n2Þ is the flexural rigidity, E is the modulus of elasticity, n is the Poisson
ratio, k2=p2/12 is the shear correction factor, and G is the shear modulus of the disk. Assume a
harmonic variation with time,

Crðr;j; tÞ ¼ crðr;jÞ cos ot; Cjðr;j; tÞ ¼ cjðr;jÞ cos ot; wðr;j; tÞ ¼ W ðr;jÞ cos ot;

(10)

to reduce Eqs. (2)–(4) to

qMr

qr
þ
1

r

qMj

qj
þ
1

r
Mr þ Mj
� �

� Qr þ
o2rdh3

12
cr ¼ 0; (11)

qMrj

qr
þ
1

r

qMj

qj
þ
2

r
Mrj � Qj þ

o2rdh3

12
cj ¼ 0; (12)

qQr

qr
þ
1

r

qQj

qj
þ
1

r
Qr þ o2rdhW ¼ 0: (13)

The transverse deflection amplitude (W) and associated angular rotations (cr and cj) are defined
in terms of three potential functions (f1, f2, and f3) as

cr ¼ s1 � 1ð Þ
qf1

qr
þ s2 � 1ð Þ

qf2

qr
þ
1

r

qf3

qj
; (14)

cj ¼
s1 � 1ð Þ

r

qf1

qj
þ

s2 � 1ð Þ

r

qf2

qj
þ

qf3

qr
; (15)

W ¼ f1 þ f2; (16)

while introducing the following parameters:

s1; s2 ¼ d22; d
2
1

� �
Rl4 �

1

S

� ��1

; (17a2b)

d22; d
2
1 ¼

l4

2
R þ S � R � Sð Þ

2
þ 4l4

� 	�1=2n o
; (18a2b)

R ¼
h2

12
; S ¼

Db

k2Gh
; l4 ¼

rdo
2h

Db

: (19a2c)
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Substitution of Eqs. (3)–(9) and (14)–(16) in Eqs. (11)–(13) along with a series of subsequent
manipulations yields

r2 þ d21
� �

f1 ¼ 0; r2 þ d22
� �

f2 ¼ 0; r2 þ d23
� �

f3 ¼ 0; (20)

where r
2 is the harmonic differential operator, and another parameter is introduced as follows:

d23 ¼ 2 Rl4 �
1

S

� ��
1� nð Þ: (21)

The solutions to Eqs. (11)–(13) require the determination of the potential functions f1, f2, and f3

that must satisfy Eq. (20):

f1 r;jð Þ ¼ Rn1 sinðnjÞ; f2 r;jð Þ ¼ Rn2 sinðnjÞ; f3 r;jð Þ ¼ Rn3 cosðnjÞ: (22a2c)

Introducing Eq. (22) into (20) yields:

r2
d2Rni

dr2
þ r

dRni

dr
þ d2i r2 � n2
� �

¼ 0; i ¼ 1; 2; 3; (23)

where n is typically a positive integer. The general solutions to Eqs. (23) involve ordinary and
modified Bessel functions of the first and second kinds and the six constants of integration that are
determined from the boundary conditions.
2.2. Thin plate theory

The thin plate theory essentially neglects the effects of rotary inertia and additional deflections
caused by shear forces [5,6]. Consequently, the governing differential equation for transverse
displacement w(r, j, t) in the mid-plane of the plate is

Db

q2

qr2
þ
1

r

q
qr

þ
1

r2
q2

qj2

� �2

w � rdh
q2w
qt2

¼ 0: (24)

Solution to this equation is assumed as

wðr;j; tÞ ¼ W ðrÞ cosðnjÞe�iot: (25)

Using Eqs. (24)–(25), the following Bessel’s equation is obtained:

d2

dr2
þ
1

r

d

dr
þ

n2

r2

� �2

W � l4W ¼ 0: (26)

General solution to this equation can be written as

W ðrÞ ¼ C1JnðlmnrÞ þ C2Y nðlmnrÞ þ C3InðlmnrÞ þ C4KnðlmnrÞ; (27)

where Jn and Yn are the Bessel functions of first and second kinds and In and Kn are modified
Bessel functions of first and second kinds. Here n is the order of the Bessel function representing
the number of nodal diameters and m is the order of eigenvalues representing the number of nodal
circles [2–5].
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2.3. Eigensolutions for free–free boundaries

For the thick plate theory, free–free boundary conditions at the inner and outer radial edges can
be expressed as follows:

Mr a;jð Þ ¼ Mrj a;jð Þ ¼ Qr a;jð Þ ¼ 0;

Mr b;jð Þ ¼ Mrj b;jð Þ ¼ Qr b;jð Þ ¼ 0:
(28a2b)

From the expressions of Mr, Mrj, and Qr as defined in Eqs. (13)–(23) along with boundary
conditions defined by Eq. (28), one could formulate the following equation in matrix form:

TTHICK½ � Cf g ¼ 0f g: (29)

Here, [TTHICK] is a 6� 6 characteristic matrix with elements of various Bessel functions, C is an
arbitrary coefficients vector and is the null vector. Refer to Ref. [8] for an analytical description of
the elements of [TTHICK]. For the thin plate theory, boundary conditions of Eq. (28) are simplified
as follows:

Mr a;jð Þ ¼ Mrj a;jð Þ ¼ 0;

Mr b;jð Þ ¼ Mrj b;jð Þ ¼ 0:
(30a2b)

Given the relations between w and bending moments (Mr, Mrj), the following equations can be
derived for the boundaries satisfying Eq. (30):

q2w
qr2

þ n
1

r

qw

qr
þ

1

r2
q2w
qj2

� �
¼ 0;

q
qr

q2w
qr2

þ
1

r

qw

qr
þ

1

r2
q2w
qj2

� �
þ
1� n

r2
q2

qj2

qw

qr
þ

w

r

� �
¼ 0:

(31a2b)

The characteristic matrix equation corresponding to thin plate theory, similar to Eq. (29), is

TTHIN½ � Cf g ¼ 0f g: (32)

Here, [TTHIN] is a 4� 4 characteristic matrix and elements of this matrix are described in Refs.
[5,6]. The characteristic or frequency equations are obtained from Eqs. (29) or (32).

2.4. Validation studies

Analytical solutions for the free–free boundaries, as obtained by both thin and thick plate
theories, are compared in Table 3. Results of finite-element analyses and structural modal
experiments are also provided for Disks I, II, and III. Only the first four modes are listed in Table
3 since the relevant upper frequency for acoustic radiation study for Disk I is 8 kHz. In the finite-
element method (FEM), 11 out-of-plane modes have been obtained in the frequency range from 0
to 16 kHz with a model that includes 4,400 solid brick elements and 6,600 nodes [10]. In addition,
mode shapes of Disk I from alternate analytical approaches are compared with numerical analysis
in Fig. 2. As shown in this figure, the mode shapes from alternate plate theories are very similar in
spite of differences in natural frequencies. In modal experiments, the excitation force f(t) is applied
in the z direction by an impulse hammer (PCB GK291C) at j=01 at the outer edge of the disk.
The set up for structural modal experiment is explained in Fig. 3. The frequency range and
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Table 3

Eigensolutions for Disks I, II and III with free–free boundaries

Disk Mode indices Non-dimensional eigenvalues l2mn ¼ omna2ðrdh=DbÞ
1=2 omn (kHZ)

m n Thick plate

theory

(Model A)

Thick plate

theory

(Model C)

Finite

element

(Model D)

Experiment

(E)

Experiment

(E)

I 0 2 3.82 4.02 3.86 3.92 1.331

1 0 8.85 9.80 8.69 9.02 3.063b=0.54

h̄=0.21 0 3 10.59 11.11 10.04 10.25 3.481

1 1 15.42 17.55 13.57 14.00 4.756

II 0 2 3.62 3.90 3.72 3.72 1.500

1 0 9.14 10.53 8.74 9.33 3.756b=0.59

h̄=0.23 0 3 10.04 10.73 9.75 9.78 3.938

1 1 15.36 18.32 13.22 13.81 5.563

III 0 2 4.06 4.12 4.03 4.03 0.706

1 0 9.55 9.82 8.99 9.53 1.669b=0.54

h̄=0.11 0 3 11.11 11.13 10.71 10.78 1.888

1 1 16.86 17.59 15.27 15.99 2.800
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Fig. 2. Comparison of Disk I mode shapes given free–free boundaries. (a) (1,0) mode; (b) (0,2) mode. Key: &&&,

thick plate theory (Model A); JJJ, thin plate theory (Model C); ——, finite-element method (Model D).

H. Lee, R. Singh / Journal of Sound and Vibration 282 (2005) 313–339 321
resolution (Df) of this experiment are set as 16 kHz and 1Hz respectively. Natural frequencies
(omn) and modal damping ratios (Bmn) are extracted from accelerance spectra €w=f ðoÞ where €w is
the acceleration and f is the applied force. As shown in Table 3, the finite-element predictions
match well with measurements. Analytical solutions based on the thick plate theory produce more
accurate answers than the ones that are based on the thin plate theory. Yet, even the thick plate
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Fig. 3. Vibro-acoustic experiment used to measure structural €w=f ðoÞ and acoustic P/f(o) frequency response functions.
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theory predictions show significant errors over the higher-frequency range. Also, it is obvious that
differences between eigenvalues based on two alternate plate theories are proportional to the
thickness ratio ðh̄ ¼ h=aÞ:
Modal damping ratios are estimated from measured accelerance spectra using the half-power

bandwidth method for every resonant peak and these results are summarized in Table 4. In
addition, accelerance spectrum €wðr;jÞ is calculated based on the numerical modal dataset using
the forced vibration analysis in the FEM. These results are subsequently used as excitation to
numerical or analytical methods for the calculation of far-field sound radiation. Fig. 4 compares
computed and measured accelerance spectra and a good agreement over the given frequency range
is observed. Dominant peaks in this figure correspond to the out-of-plane modes whose
frequencies are listed in Table 3.

2.5. Effect of fixed–free boundaries

Eigensolutions for a disk with fixed–free boundaries can be easily calculated from the analytical
solutions of Section 2.1. For the thick plate case, boundary conditions at r=b (fixed) and r=a
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Table 4

Measured modal damping ratios for Disk I

Mode Indices Damping ratio (%)

m n

0 2 0.62

1 0 0.34

0 3 0.26

1 1 0.26

0 2 4 6 8
50

100

150

Frequency (kHz)

dB
 re

 2
0 

µm
/s

2
-N

(0, 2) 
(1, 0)

(0, 3)

(1, 1)

(0, 4)

Fig. 4. Structural accelerances €w=f ðoÞ at r=151.5mm and j=1801 for Disk I with free–free boundaries. Key: - - -,

computed using FEM (Model D); ——, measured (E).

H. Lee, R. Singh / Journal of Sound and Vibration 282 (2005) 313–339 323
(free) edges are expressed as

Mr a;jð Þ ¼ Mrj a;jð Þ ¼ Qr a;jð Þ ¼ 0;

W b;jð Þ ¼ cr b;jð Þ ¼ cj b;jð Þ ¼ 0:
(33a2b)

Likewise, for the thin plate case, these conditions are specified as

Mr a;jð Þ ¼ Mrj a;jð Þ ¼ 0; W r b;jð Þ ¼
qW r

qr
b;jð Þ ¼ 0: (34a2b)

From these boundary conditions, matrix equations similar to Eqs. (29) and (32) can be obtained
and eigenvalues can be determined using the same procedure. In addition, natural frequencies are
also calculated using the FEM and compared with alternate plate theories in Table 5. As in the
free–free boundary case, eigensolutions based on the thick plate theory are much more accurate
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Table 5

Eigensolutions of Disk I with fixed–free boundary conditions

Mode indices Non-dimensional eigenvalue l2mn ¼ omna2ðrdh=DbÞ
1=2 omn (kHz)

m n Thick plate Thin plate FEM FEM

0 0 11.96 15.72 13.61 4.623

0 1 13.43 16.05 13.63 4.628

0 2 15.28 17.52 14.28 4.849

0 3 18.75 21.17 16.81 5.709

0.3 0.5 0.7
0

5

10

15

β

λ2 λ2

0 0.2
0

5

10

15

   h

(0, 3) 

(0, 2) 

(0, 3)

(0, 2)

(a) (b)

Fig. 5. Effect of geometry on the (0,2) and (0,3) modes of Disk I with free–free boundaries. (a) Effect of radii ratio (b);
(b) effect of thickness ratio (h̄). Key: ——, thick plate theory (Model A); JJJ, thick plate theory without rotary inertia

effect (Model B); - - -, thin plate theory (Model C); K K K, measured (E).
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than those given by the thin plate theory. Note that modal experiments are not attempted since it
is difficult to experimentally simulate the perfect fixed boundary condition at r=b.

2.6. Effect of disk geometry on eigensolutions

As one can see from Eqs. (20)–(23), structural eigensolution of a thick annular disk are affected
by the radii ratio (b=b/a), thickness ratio ðh̄ ¼ h=aÞ; as well as by material properties. In this
section, effects of b and h̄ on the non-dimensional eigenvalues are examined for selected modes of
Disk I with free–free or fixed–free boundaries. In our investigation, such non-dimensional
parameters are controlled by adjusting h and b for a fixed a. Eigenvalues are calculated using three
alternate analytical methods based on models A, B, and C as described in Table 2. Results are
shown in Figs. 5 and 6 where differences in the alternate formulations are evident. For the
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Fig. 6. Effect of geometry on the (1,0) and (1,1) modes of Disk I with free-free boundaries. (a) Effect of radii ratio (b);
(b) effect of thickness ratio (h̄). Key: ——, thick plate theory (Model A); JJJ, thick plate theory without rotary inertia
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free–free disks, experimental and FEM results are also included in these figures for the sake of
comparison. Differences between the l2mn values, based on alternate approaches, are proportional
to h̄ for all modes. But as shown in Figs. 5(a) and 6(a), the effects of b are mode dependent. For
example, differences are proportional to b for the (1,0) and (1,1) modes. Conversely, for the (0,2)
and (0,3) modes, such differences are inversely proportional to b. The comparison of natural
frequencies based on models A, B, and C suggests that differences between eigensolutions are
mainly caused by the rotary inertia effect in the (1,0) and (1,1) modes and by the shear
deformations in the (0,2) and (0,3) modes. Similar investigation has been executed for the fixed-
free disk and results are given in Figs. 7 and 8. Differences between eigenvalues based on thick and
thin plate theories appear to be caused by the shear deformations regardless of the mode type.
Also, in this case, these differences are proportional to thickness and radii ratios for all modes.
3. Acoustic radiation calculations

3.1. Formulation

Sound radiation from the flexural vibrations of circular plates or annular disks has been
examined by several investigators [11–15]. For instance, Thompson [11] computed self- and
mutual radiation impedances of a uniformly vibrating annular or circular piston by integrating
the far-field directivity function. Lee and Singh [12] proposed a polynomial approximation for
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modal acoustic power radiation from a thin annular disk using the far-field and radiation
impedance approaches. Levine and Leppington [13] developed an analytical solution for active
and reactive powers from a planar annular membrane given axisymmetric motions. Rdzanek and
Engel [14] suggested asymptotic formulas for power from a thin annular disk with clamped edges.
Wodtke and Lamancusa [15] investigated a circular plate using finite-element analysis and then
calculated the radiation via the Rayleigh integral formula. However, none of these studies have
examined radiation from a thick annular disk. Jungar and Feit [16] introduced simplified
expressions of Helmholtz integral equation using short- and long-wavelength approximations.
Finally, Fahline and Koopmann [17] used the same expressions for general radiators with sharp
edges and obtained reliable results.
If acoustic scattering from the edges of a vibrating structure is neglected, sound radiation from

that structure can be typically expressed in an integral form:

PðrpÞ ¼

Z
Ss

qg

qn̄
ðrp; rsÞpðrpÞ �

qp

qn̄
ðrsÞgðrp; rsÞ

� �
dSðrsÞ: (35)

Here, P is the sound pressure amplitude, g is the free-field Green function, rp and rs are the
position vectors of receiver and source positions and n̄ is the surface normal vector at rs. For a
non-planar source, the far- and free-field sound pressure can be expressed as Eq. (36) based on the
plane-wave approximation within the short-wavelength limits [16] along with a reference to Fig. 9

PðrpÞ ¼
r0c0k
4p

Z
Ss

eik rp�rsj j _W ðrsÞ

rp � rs

�� �� ð1þ cos ZÞdS: (36)

Here, r0 is the mass density of air, c0 is the speed of sound, k is the acoustic wave number, and _W
is the amplitude of vibratory velocity in the z direction at rs. For an axially symmetric radiator
such as a circular or annular plate, (m, n)th modal sound pressure from a normal plane can be
expressed as follows by simplifying Eq. (36) using the Hankel transform [16]. Here, Jn is the Bessel
function of order n, R=|rp| is the radius of the sphere on which the observation positions are
defined, and y and f are the cone and azimuthal angles of the observation positions, respectively.

PmnðR; y;fÞ ¼ r0c0keikmnRd

2Rd
cos nfð�iÞnþ1Bn _wðrÞ½ �ð1þ cos ZÞ;

Bn _wðrÞ½ � ¼
R1
0

_wðrÞJnðkrrÞrdr; kr ¼ k sin y; Rd ¼ rp � rs

�� ��: (37a2d)

In our study, the observation positions are defined by a group of points having equal
angular increments (Dj, Dy) on a sphere (SV) that is centered at the disk center and sound
pressures at all of the observation positions are calculated using Eqs. (36) or (37). The modal
directivity function Dmn(y, f) at frequency omn can be defined from the modal pressure Pmn(rp)
expression as follows:

Dmnðy;fÞ ¼ RPmnðR; y;fÞeikmnR: (38)

From the far-field approximation, modal sound power Pmn of the (m, n)th mode is calculated
using the following equation:

Pmn ¼ ImnSVh is ¼
1

2

Z 2p

0

Z p

0

P2
mn

r0c0
R2 sin ydydf: (39)
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Here, Imn is the acoustic intensity, and Sv is area of the control surface. The modal
radiation efficiency smn of an annular disk is determined from Pmn as follows
where _wmnj j2

� �
t;s

is the spatially averaged mean-square velocity on the two normal surfaces of
the annular disk:

smn ¼
Pmn

_wmnj j2
� �

t;s

; _wmnj j2
� �

t;s
¼

1

2pða2 � b2Þ

Z a

b

Z 2p

0

_W
2
djdr: (40a2b)

3.2. Thin plate approach

The classical method based on the thin plate theory does not consider the effect of h in sound
radiation calculation. In this case, h is assumed to be negligible relative to other disk dimensions
and sound radiation from the (m, n)th mode of a thick annular disk is generally calculated using
the following equation by simultaneously considering sound radiation from two normal surfaces.
In addition, Rd in Eq. (36) is approximated with R and Eq. (36) is simplified to yield the following
expression for Pmn:

PmnðR; y;fÞ ¼
r0c0kmne

ikmnR

R
cos nfð�iÞnþ1Bn _wðrÞ½ � cos y: (41)

As an alternative to Eq. (41), the results of structural analysis of Section 2 may be used.
For example, define the approximate mode shape Cmn and the corresponding modal
surface velocity _wmn as follows where polynomial functions are used to describe the flexural
vibrations [12]:

cmnðr;jÞ ¼ cosðnjÞ
PN
s¼0

Cmn;s;

_wmnðr;j; tÞ ¼ _W ðr;jÞeiomnt ¼ �omnCmn;sr
s cosðnjÞeiomnt:

(42a2b)

Here, Cmn,s is an arbitrary constant. Substituting Eq. (42b) into Eq. (37), the far-field modal sound
pressure Pmn is

PmnðR; y;fÞ ¼
r0ckmne

ikmnRd

Rd

cos nfð�iÞnþ1
XN

s¼0

Cmn;s

Z a

b

rsþ1Jðkmnr sin yÞdr cos y: (43)

By expanding the Bessel function of the first kind in terms of corresponding power series, the
modal sound pressure can be expressed as

PmnðR; y;fÞ ¼
r0ckmne

ikmnRd

Rd

cos nfð�iÞnþ1 cos y

�
XN

s¼0

X1
l¼0

Cmn;sð�1Þ
l
ðkmn sin yÞ2mþ1bnþsþ2lþ2

l!ðn þ lÞ!22lþnðn þ s þ 2l þ 2Þ
1� bnþsþ2lþ2
� �

: ð44Þ

The analytical method based on the thin plate theory (Model K) uses Eq. (44) for sound pressure
calculations.
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3.3. Thick plate approach

For the thick plate theory, we do not ignore the thickness (h) effect. Therefore, sound radiations
from two normal surfaces should be simultaneously considered. With reference to Eq. (35) along
with the far-field assumption, the angle Z is approximated by y for the normal surface facing the
field point and by �y on the opposite side. Consequently, the sound pressure at rp is given by the
sum:

PðrpÞ ¼
r0ck

4p

Z
Ss

eik rp�rsj j _W ðrsÞ

rp � rs

�� �� ð1þ cos yÞ þ
Z

Ss

eik rp�r0sj j _W ðr0sÞ

rp � r0s
�� �� ð1� cos yÞ

 !
dS: (45)

Here, r0s is the position vector of a source point on the normal surface that is away from the field
point. In addition, |rp�rs| and rp � r0s

�� �� are expressed as

Rd ¼ rp � rs

�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z � h

2

� �2q
� R 1� hz

R2

� �
� R � h

2
cos y;

R
0

d ¼ rp � r0s
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z þ h
2

� �2q
� R 1þ hz

R2

� �
� R þ h

2
cos y;

R ¼ rp

�� ��; x ¼ R sin y cos f; y ¼ R sin y sin f; z ¼ R cos y:

(46a2f)

According to the far-field condition, Rd and R0
d in the denominator of Eq. (46) can be

approximated by R, but the numerator terms cannot be replaced with R especially over the
higher-frequency range. Substituting Eq. (46) into Eq. (45) and employing the Hankel transform
used in Eq. (36), we find the following equations with a simplified R expression in the
denominator.

Ps
mnðR; y;fÞ ¼

r0ckmne
ikmnR

2R
e�ikmn

h
2 cos y cos nfð�iÞnþ1Bn½ _wðrÞ�;

Po
mnðR; y;fÞ ¼

r0ckmne
ikmnR

2R
eikmn

h
2
cos y cos nðfþ pÞð�iÞnþ1Bn½ _wðrÞ�:

(47a2b)

As one can see from these equations, the disk thickness introduces a phase difference that is equal
to –kmn(h/2)cos y for the surface facing the field point and is kmn(h/2)cos y for the surface away
from the field point. The total far-field modal sound pressure is expressed by a sum of sound
radiations from two normal surfaces

PmnðR; y;fÞ ¼ ð1þ cos yÞPs
mnðR; y;fÞ þ ð1� cos yÞPo

mnðR; y;fÞ: (48)

The semi-analytical (Model L) and analytical (Model J) methods based on the thick plate theory
consider the effect of h and use Eq. (48) for the calculation of sound pressure.
4. Computational and experimental investigations of sound radiation

Modal acoustic radiation properties such as acoustic frequency response functions P/f(o),
modal acoustic power (Pmn), and modal radiation efficiency (smn) of Disk I are obtained using the
analytical methods of Section 3. Furthermore, the same radiation properties are calculated with
uncoupled, direct, exterior, and unbaffled boundary element analyses [18]. In the computational
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study (Model M), 6146 acoustic field points and 6144 elements are defined on the sphere (Sv)
surrounding the disk that is represented by the finite-element model for structural dynamics. The
center of this sphere coincides with the disk center. Excitations to this boundary element analysis
(BEM) are the normal velocity distribution _W ðr;jÞ on both normal surfaces that are obtained
from the forced vibration analysis using the finite-element code (Model D). Analytical predictions
and numerical analyses are verified by comparing results with measured data obtained from vibro-
acoustic experiments conducted in an anechoic chamber as shown in Fig. 3. Far-field sound
pressures are measured with a 6mm microphone (MTS L130C10 combined with pre-amplifier
MTS 130P10) at predetermined field points on a circle of R=303mm radius from the disk center
in the plane of j=01 and y=901. Considering the symmetries of the pressure distributions, P is
measured in the range of 01pyp901 in the j=01 plane with an increment of Dy=2.51 and over
01pjp901 in the y=901 plane with an increment of Df=51. The same radius (303mm) is used in
computational and analytical studies. Force and pressure signals are conditioned and analyzed via
a 2-channel dynamic signal analyzer (HP 35670A) to obtain p/f(o) spectra such as the one shown
in Fig. 10.
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Fig. 10. Acoustic frequency response function P/f(o) given unit impulsive force excitation f(t) in the z direction at

r ¼ 151:5mm: (a) y=p/2 and f=0; (b) y=0 and f=0. Key: ——, analytical calculation (Model L); - - -, computed
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Fig. 11. Directivity pattern Dmn(y) given f=0 and R=303mm. (a) m=0, n=2 mode; (b) m=0, n=3 mode. Key:
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The experimental directivity pattern D(y, f) on the sphere SV is synthesized from measured P(y,
f) data. Our analytical methods accurately predict the far-field sound pressure distributions. This
is illustrated in Fig. 11 where P(y, f) results from alternate analytical procedures are compared
with measured and computed values for the (0,2) and (0,3) modes. Further, Table 6 compares
directivity patterns in a pictorial form. Analytical predictions of Pmn and smn for two modes are
compared with BEM code (Model C) and measured results in Table 7. In the experimental case,
results at the discrete points over SV have been synthesized using the measured Pmn(y, f) data to
yield Pmn along with smn. In this process, the measured Pmn(y, f) profile is assumed to have a
perfect sinusoidal variation in the f direction. As shown in Tables 6 and 7, acoustic radiation
properties obtained using analytical solutions (Models J, K, and L) match well with
computational predictions (Model M) and measurements.
5. Effect of key parameters on modal radiation

As shown in Section 3, natural frequencies and modes of a thick annular disk are affected by its
geometry and boundaries. Furthermore, Eqs. (44)–(45) illustrate that Pmn depends on disk
geometry, vibrating mode and frequency. In this section, effects of the radii ratio (b=b/a),
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Table 6

Comparision of directivity patterns for selected modes of Disk I

Structural 
mode

(0, 2) Mode

+

--

+

+

--

+

(0, 3) Mode

+

+

+

-

-

-

+

+

+

-

-

-

Analytical 
method

Measured

Computed 
using 
BEM

Table 7

Comparison of modal acoustic power and radiation efficiency levels for selected out-of-plane modes of Disk I

Mode (m, n) Measured BEM

(Model O)

Semi-analytical

(Model L)

Analytical

Thick plate

(Model J)

Thin plate

(Model K)

Pmn,(dB re 1 pW)

(1,1) 70.1 70.7 71.6 70.1 70.9

(0,3) 75.3 76.3 76.2 75.1 74.8

smn

(1,1) 0.77 0.75 1.08 1.23 1.06

(0,3) 0.81 1.01 1.01 1.28 1.14
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thickness ratio (h̄ ¼ h=a), and boundary conditions on modal sound radiation are studied through
variations in _wmnj j2

� �
t;s
; Pmn and smn as introduced by changes in key parameters. As a first step,

natural frequencies and mode shapes corresponding to a specific geometric configuration are
calculated using thin or thick plate theory and then the modal surface velocities are defined from
the corresponding structural eigensolutions. Then, the modal far-field sound pressures are
calculated using Eq. (43) or (45). Finally, Pmn and smn are obtained from the sound pressure data
using Eqs. (39)–(40). In this particular study, the amplitudes of modal vibrations are intentionally
adjusted to get the same modal velocity amplitudes regardless of variations in the natural
frequencies for a given geometric configuration.
5.1. Effects of radii ratio

First, the effect of b is investigated using Disk I. The results of this investigation are
summarized in Figs. 12 and 13, where _wmnj j2

� �
t;s
and smn are significantly affected by b. For a

limiting case of b-0 when the annular disk turns into a circular disk, sound radiation can be
solved using the same solution. And, for the other limiting case when b-1, the annular disk can
be considered as a thin cylinder that cannot generate sound with its out-of-plane vibration. As
shown in Fig. 12, _wmnj j2

� �
t;s
and smn for (0,2) and (0,3) modes converge to 0 as b-1 irrespective of

plate theories. But, as shown in Fig. 13, smn values for (1,0) and (1,1) modes based on thin plate
theory significantly fluctuate with b even in the case of b-1 though the corresponding _wmnj j2

� �
t;s

values monotonically decrease. Conversely, smn values for (1,0) and (1,1) modes based on the
thick plate theory do not show much fluctuation with b. It is conceivable thatPmn values based on
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Fig. 12. Effect of radii ratio on the modal sound radiation based on alternate plate theories. (a) Spatially averaged

mean-square velocity _wj j2
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; (b) radiation efficiency s. Key: JJJ, (0,2) mode with thick plate theory (Model J); ——

, (0,2) mode with thin plate theory (Model K); &&&, (0,3) mode with thick plate theory (Model J); - - -, (0,3) mode
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the thin plate theory fluctuate with b but the same values based on the thick plate theory are
stable.

5.2. Effects of thickness

Next, h̄ is selected as an independent variable and it is varied from 0.025 to 0.35 with a nominal
value of h̄0 ¼ 0:21: Results are summarized in Figs. 14 and 15 where one can observe considerable
variations in smn. The _wmnj j2

� �
t;s
values based on the thin plate theory are constant irrespective of

the mode type. Conversely, the same data based on the thick plate theory are mode dependent.
For instance, _wmnj j2

� �
t;s

is proportional to h̄ for (0,2), (0,3) or (1,0) modes, but is inversely
proportional to h̄ for (1,1) mode. As shown in Section 2, natural frequencies of the out-of-plane
modes are proportional to h. If the disk thickness is small enough such that the natural frequency
for a specific mode is below the critical frequency, the modal sound radiation is very low [16]. For
this reason, smn values are very low in the region of small h̄ regardless of the mode type as shown
in Figs. 14 and 15. Furthermore, for the thick plate theory, phase difference between sound
pressures radiated from two normal surfaces is proportional to h̄ and the effect of this phase
difference should be considered in addition to the effect of natural frequency change. For the thin
plate theory that considers sound pressure from only one normal surface, radiation is affected
only by the natural frequency variation.

5.3. Effects of boundary conditions

The effect of fixed–free boundary conditions on sound radiation is finally studied. Typical Pmn

and smn of two out-of-plane modes for Disk I with either free–free or fixed–free boundary
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conditions are listed in Table 8. The modal acoustic powers and radiation efficiencies for modes
with the same number of nodal diameters (n) significantly change when the inner edge is clamped.
For example, P02 and s02 increase with fixed–free boundaries due to the increases in the
corresponding natural frequencies. For instance, o02 goes up from 1.31 kHz (below the critical
frequency that is around 2.0 kHz) to 4.85 kHz (above the critical frequency). Also, Pmn and smn

for n=0 and n=1 modes, significantly increase due to the elimination of a nodal circle in the
corresponding mode shapes. In addition, directivity patterns of two sample modes with fixed–free
boundaries are numerically calculated and compared in Fig. 16 with those with free–free
Table 8

Modal acoustic powers and radiation efficiencies for first four out-of-plane modes with fixed–free or free–free

boundaries

Boundaries Mode indices omn (kHz) Pmn (dB re 1 pW) smn

Free–free (0,2) 1.31 70.9 0.263

(1,0) 2.95 67.2 0.379

(0,3) 3.41 76.3 1.030

(1,1) 4.61 70.7 0.808

Fixed–free (0,0) 4.62 69.7 0.900

(0,1) 4.63 73.4 0.884

(0,2) 4.85 73.2 0.878

(0,3) 5.71 73.7 0.883
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Fig. 16. Modal directivity patterns of Disk I with alternate boundary conditions. (a) n=2 modes; (b) n=0 modes. Key:

——, fixed–free; - - -, free–free boundary condition.
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boundaries. The application of fixed–free boundary conditions increases the number of ripples in
the y direction for both modes.
6. Conclusion

This article has proposed a new analytical solution that explicitly considers the disk thickness
effect on sound radiation from out-of-plane modes. In addition, our semi-analytical procedure
combines the computationally obtained disk surface velocities with analytical solutions for sound
radiation. A comparative evaluation of thin and thick plate theories shows that the thick plate
theory is more accurate when predictions are compared with computational codes (such as FEM
and BEM) and vibro-acoustic experiments. Our procedure can be efficiently used to conduct
parametric studies such as the ones reported in this article by varying the radii or thickness ratio.
In particular, one can easily analyze the limiting cases of a circular plate and a thin cylinder
considering only the out-of-plane flexural modes. In a future article, we will simultaneously
consider both out-of-plane and in-plane components of the disk vibration. Modal interaction
effects and sound radiation from coupled modes will also be studied.
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